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Background: Secure (Group) Messaging 
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Secure (Group) Messaging
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Recently, a lot of people use secure (group) messaging apps. 
Applications Num. of monthly active users
WhatsApp 2.0 billion
Facebook Messenger 1.3 billion
Telegram 550 million
Snapchat 514 million

Ref: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/



Secure (Group) Messaging
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§ “NSA Prism program taps into user data of Apple, Google and others”, The Guardian, 2013
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data

§ “Al Jazeera journalists ‘hacked via NSO Group spyware’”, BBC, 2020
https://www.bbc.com/news/technology-55396843

§ “Grand jury subpoena for Signal user data, Central District of California”, Signal , 2020
https://signal.org/bigbrother/central-california-grand-jury/

Recently, a lot of people use secure (group) messaging apps. 
Applications Num. of monthly active users
WhatsApp 2.0 billion
Facebook Messenger 1.3 billion
Telegram 550 million
Snapchat 514 million

Because governments and hackers try to gather personal information.
Ref: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/



Secure (Group) Messaging
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Recently, a lot of people use secure (group) messaging apps. 
Applications Num. of monthly active users
WhatsApp 2.0 billion
Facebook Messenger 1.3 billion
Telegram 550 million
Snapchat 514 million

Ref: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

§ 2-party messaging: Signal protocol
§ Analyzed by a lot of works [CGC+17, ACD19, BFG+20, HKKP21]

§ Group messaging : Continuous Group Key Agreement (this talk)

Existing secure (group) messaging:



Continuous Group Key Agreement (CGKA) [ACDT20]
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§ Add a party to the group
§ Remove a party from the group
§ Update key materials (Ratcheting)

Group key agreement protocols that concentrate the cryptographic 
mechanisms of secure group messaging protocols:

←$



Continuous Group Key Agreement (CGKA) [ACDT20]
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CGKA achieves strong security properties by updating key materials

§ Forward secrecy (FS)

Epoch

Compromised!

Secure

Secure
§ Post-compromise security (PCS)

Key update

Key materials

Epoch
Key materials

Compromised!



Existing CGKA protocols
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§ TreeKEM [BBR18, BBN19, ACDT20, ACJM20, AJM20…]
§ Used in IETF Messaging Layer Security (MLS) [OBR+21, BBM+20]

§ Chained mKEM [BBN19]
§ Based on multi-recipient PKE (mPKE)
§ Starting point of our study

Scheme Upload cost Download cost Total cost
(upload + N-1 download)

TreeKEM Ω(log𝑁) Ω(log𝑁) Ω(𝑁log𝑁)
Chained mKEM 𝑂(𝑁) 𝑂(𝑁) 𝑂(𝑁!)

Bandwidth cost for key update (𝑁: group size)



Efficient key update is important
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As the group size 𝑁 increases, 
§ the size of key update messages also increases 
§ the frequency of key update also increases 

§ Likelihood of  key compromise is higher for large group



Efficient key update is important

10

As the group size 𝑁 increases, 
§ the size of key update messages also increases 
§ the frequency of key update also increases 

§ Likelihood of  key compromise is higher for large group

This tension is amplified by two factors:
§ Messaging apps target mobile devices

§ Data cap per month is limited (e.g., 1GB)
§ Post-quantum cryptography

§ Consume x10 or more bandwidth than classical counterpart
§ Example: TreeKEM with Classic McEliece [ABC+20] used in 256 users' group.

If each user updates its key material twice, it costs 1 GB for each user.



Efficient key update is important
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As the group size 𝑁 increases, 
§ the size of key update messages also increases 
§ the frequency of key update also increases 

§ Likelihood of  key compromise is higher for large group

This tension is amplified by two factors:
§ Messaging apps target mobile devices

§ Data cap per month is limited (e.g., 1GB)
§ Post-quantum cryptography

§ Consume x10 or more bandwidth than classical counterpart
§ Example: TreeKEM with Classic McEliece [ABC+20] used in 256 users' group.

If each user updates its key material twice, it costs 1 GB for each user.
Smaller key update costs are desirable in the real-world!



Efficient key update is important
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As the group size 𝑁 increases, 
§ the size of key update messages also increases 
§ the frequency of key update also increases 

§ Likelihood of  key compromise is higher for large group

This tension is amplified by two factors:
§ Messaging apps target mobile devices

§ Data cap per month is limited (e.g., 1GB)
§ Post-quantum cryptography

§ Consume x10 or more bandwidth than classical counterpart
§ Example: TreeKEM with Classic McEliece [ABC+20] used in 256 users' group.

If each user updates its key material twice, it costs 1 GB for each user.

Smaller key update costs are desirable!

Purpose
Design PQ CGKA protocol with small key update costs



Our contribution
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1. Committing mPKE ⇒ achieve 𝑂 1 download cost
2. More efficient PQ mPKE ⇒ reduce the concrete size of key update messages

Chained CmPKE: CGKA with asymmetric bandwidth cost

Scheme Upload cost Download cost Total cost
(upload + N-1 download)

TreeKEM Ω(log𝑁) Ω(log𝑁) Ω(𝑁log𝑁)
Chained mKEM 𝑂(𝑁) 𝑂(𝑁) 𝑂(𝑁!)
Chained CmPKE 𝑂 𝑁 ⋆ 𝑶(𝟏) 𝑶(𝑵)

Chained CmPKE is based on Chained mKEM with two new ideas:
⋆: When 𝑁 is about hundreds, the concrete upload cost is smaller than TreeKEM. 



New CGKA: Chained CmPKE
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Contribution 1



Racap: Multi-recipient PKE (mPKE)
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§ The same message 𝑀 can be efficiently encrypted to 𝑁 parties
§ Recently, [KKPP20] has revisited mPKE in the post-quantum setting

§ .𝑐𝑡# ≪ |𝑐𝑡$| in this setting

mEnc 𝑀, 𝑒𝑘# #∈ & → (𝑐𝑡$, .𝑐𝑡# #∈[&])

mDec 𝑑𝑘!, 𝑐𝑡$, .𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

mDec 𝑑𝑘&, 𝑐𝑡$, .𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

(𝑐𝑡!, &𝑐𝑡")

(𝑐𝑡!, &𝑐𝑡#)



Starting point: Chained mKEM [BBN19]
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CGKA protocol based on mPKE
𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Key update on 𝑁 parties’ group



Chained mKEM [BBN19]

17

CGKA protocol based on mPKE

1. Gen new public key 𝑒𝑘!
2. Gen new group key 𝐾
3. Gen 𝑐𝑡", /𝑐𝑡# #∈ % ← mEnc(𝐾, 𝑒𝑘# #∈ % )
4. Gen 𝑠𝑖𝑔! ← Sign 𝑠𝑘!, 𝑒𝑘!
5. Gen 𝑠𝑖𝑔& ← Sign 𝑠𝑘!, (𝑐𝑡", /𝑐𝑡# #∈[%])

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!
offline

offline
Store the msg
from party 1

offline



Chained mKEM [BBN19]
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CGKA protocol based on mPKE

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!



Drawback of Chained mKEM [BBN19]
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CGKA protocol based on mPKE

(𝑒𝑘!, 𝑐𝑡%, )𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%, )𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%, )𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

Download 𝑶(𝑵) ciphertexts
to verify signature

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!



Download 𝑶(𝑵) ciphertexts
to verify signature

Drawback of Chained mKEM [BBN19]
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CGKA protocol based on mPKE

(𝑒𝑘!, 𝑐𝑡%, )𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%, )𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%, )𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Can we reduce download cost to 𝑂 1 ?



Naïve approach to achieve 𝑂(1) download cost
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1. Gen new public key 𝑒𝑘!
2. Gen new group key 𝐾
3. Gen 𝑐𝑡", /𝑐𝑡# #∈ % ← mEnc(𝐾, 𝑒𝑘# #∈ % )
4. Gen 𝑠𝑖𝑔! ← Sign 𝑠𝑘!, 𝑒𝑘!
5. For 𝒊 ∈ 𝑵 , 𝒔𝒊𝒈𝟐,𝒊 ← Sign 𝒔𝒌𝟏, (𝒄𝒕𝟎, /𝒄𝒕𝒊 )

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐,𝒊 𝒊∈ 𝑵 )

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Sender signs individually messages for each user



Naïve approach to achieve 𝑂(1) download cost
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(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Recipients selectively download messages they needed



Naïve approach to achieve 𝑂(1) download cost
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(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Recipients selectively download messages they needed

Download cost is 𝑶(𝟏)



Naïve approach to achieve 𝑂(1) download cost
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(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#

Recipients selectively download messages they needed

𝑒𝑘!

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐,𝒊 𝒊∈ 𝑵 )

Upload 𝑶(𝑵) signatures

Note: PQ signatures are large! Download cost is 𝑶(𝟏)



Download cost is 𝑶(𝟏)

Naïve approach to achieve 𝑂(1) download cost
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(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#

Recipients selectively download messages they needed

𝑒𝑘!

(𝑒𝑘!, 𝑐𝑡%, )𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐,𝒊 𝒊∈ 𝑵 )

Upload 𝑶(𝑵) signatures

Note: PQ signatures are large!

Can we reduce download cost to 𝑂 1
without increasing the num. of signatures?



Our solution: Committing mPKE (CmPKE)
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CmEnc 𝑀, 𝑒𝑘# #∈ & → (T, 𝑐𝑡# #∈[&])

CmDec 𝑑𝑘!, T, 𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

CmDec 𝑑𝑘&, T, 𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

(T, 𝑐𝑡")

(T, 𝑐𝑡#)



Our solution: Committing mPKE (CmPKE)
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CmEnc 𝑀, 𝑒𝑘# #∈ & → (T, 𝑐𝑡# #∈[&])

CmDec 𝑑𝑘!, T, 𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

CmDec 𝑑𝑘&, T, 𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

(T, 𝑐𝑡")

(T, 𝑐𝑡#)

Commitment-binding: T is linked to a unique message 𝑀
⇒ If parties receive the same T, they decrypt the same 𝑀 or ⊥



Our solution: Committing mPKE (CmPKE)
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CmEnc 𝑀, 𝑒𝑘# #∈ & → (T, 𝑐𝑡# #∈[&])

CmDec 𝑑𝑘!, T, 𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

CmDec 𝑑𝑘&, T, 𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

Propose IND-CPA mPKE ⇒ IND-CCA CmPKE transformation 
§ CmEnc runs mEnc 𝑘, 𝑒𝑘# #∈ & → (ct$, E𝑐𝑡# #∈[&]) and SKE.Enc 𝑘,𝑀 → 𝑐
§ Outputs T = 𝑐𝑡$, 𝑐 and 𝑐𝑡# = .𝑐𝑡#, 𝑐 = 32 bytes
Use key‐committing AEADs [FOR17, GLR17, ADG+20] as SKE

(T, 𝑐𝑡")

(T, 𝑐𝑡#)



Our CGKA: Chained CmPKE
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1. Gen new public key 𝑒𝑘!
2. Gen new group key 𝐾
3. Gen 𝐓, 𝒄𝒕𝒊 𝒊∈ 𝑵 ← 𝐂𝐦𝐄𝐧𝐜(𝑲, 𝒆𝒌𝒊 𝒊∈ 𝑵 )
4. Gen 𝑠𝑖𝑔! ← Sign 𝑠𝑘!, 𝑒𝑘!
5. Gen 𝒔𝒊𝒈𝟐 ← Sign 𝒔𝒌𝟏, 𝐓

(𝑒𝑘!, 𝐓, 𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#

CGKA protocol based on CmPKE

𝑒𝑘!

Due to commitment-binding, 
tampering with 𝑐𝑡& is detected at decryption



Our CGKA: Chained CmPKE
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(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Recipients selectively download messages they needed



Our CGKA: Chained CmPKE

31

(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download cost is 𝑶(𝟏)



Our CGKA: Chained CmPKE
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(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download cost is 𝑶(𝟏)
Upload constant signatures

(𝑒𝑘!, T, 𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)



Our CGKA: Chained CmPKE
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(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download cost is 𝑶(𝟏)
Upload constant signatures

(𝑒𝑘!, T, 𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

We achieve 𝑂(1) download cost
without increasing the num. of signatures! J



Security of Chained CmPKE

34

§ Adopt the UC security model in [AJM20] used to analyze TreeKEM
§ It considers active adversaries and malicious insiders

§ Extend this model to capture selective downloading of messages
§ Our model is the strict generalization of the model in [AJM20]

Chained CmPKE is as secure as TreeKEM version 10 in MLS



More efficient post-quantum mPKEs

35

Contribution 2



Existing post-quantum mPKE
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Enc(𝑒𝑘 = 𝐁,𝑀):
1. Sample short matrixes 𝐑, 𝐄′, 𝐄′′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. 𝐕 ← 𝐑𝐁 + 𝐄$$ + Encode(𝑀)
4. 𝑐𝑡 ≔ (𝐔, 𝐕)

[KKPP20] proposed efficient PQ mPKEs based on LWE, LWR, and SIDH.
Example scheme based on [LPR10, LP11]:

mEnc({𝑒𝑘%, … , 𝑒𝑘#},𝑀):
1. Sample short matrixes 𝐑, 𝐄′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. For 𝑖 = 1,… ,𝑁

1. Sample short matrix 𝐄&--

2. 𝐕& ← 𝐑𝐁& + 𝐄&-- + Encode(𝑀)
4. 𝑐𝑡!, (C𝑐𝑡& &∈[#]) ≔ (𝐔, 𝐕& &∈[#])
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1. Not optimize parameters to make &𝑐𝑡! smaller
• In CGKA setting, small E𝑐𝑡# is desirable to reduce upload cost (~|E𝑐𝑡#| ⋅ 𝑁)

2. Not analyze the hardness of underlying problems in mPKE setting

Two shortcomings of [KKPP20]:

Enc(𝑒𝑘 = 𝐁,𝑀):
1. Sample short matrixes 𝐑, 𝐄′, 𝐄′′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. 𝐕 ← 𝐑𝐁 + 𝐄$$ + Encode(𝑀)
4. 𝑐𝑡 ≔ (𝐔, 𝐕)

[KKPP20] proposed efficient PQ mPKEs based on LWE, LWR, and SIDH.
Example scheme based on [LPR10, LP11]:

mEnc({𝑒𝑘%, … , 𝑒𝑘#},𝑀):
1. Sample short matrixes 𝐑, 𝐄′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. For 𝑖 = 1,… ,𝑁

1. Sample short matrix 𝐄&--

2. 𝐕& ← 𝐑𝐁& + 𝐄&-- + Encode(𝑀)
4. 𝑐𝑡!, (C𝑐𝑡& &∈[#]) ≔ (𝐔, 𝐕& &∈[#])



Existing post-quantum mPKE
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1. Not optimize parameters to make &𝑐𝑡! smaller
• In CGKA setting, small E𝑐𝑡# is desirable to reduce upload cost (~|E𝑐𝑡#| ⋅ 𝑁)

2. Not analyze the concrete security in mPKE setting

Two shortcomings of [KKPP20]:

Enc(𝑒𝑘 = 𝐁,𝑀):
1. Sample short matrixes 𝐑, 𝐄′, 𝐄′′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. 𝐕 ← 𝐑𝐁 + 𝐄$$ + Encode(𝑀)
4. 𝑐𝑡 ≔ (𝐔, 𝐕)

[KKPP20] proposed efficient PQ mPKEs based on LWE, LWR, and SIDH.
Example scheme based on [LPR10, LP11]:

mEnc({𝑒𝑘%, … , 𝑒𝑘#},𝑀):
1. Sample short matrixes 𝐑, 𝐄′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. For 𝑖 = 1,… ,𝑁

1. Sample short matrix 𝐄&--

2. 𝐕& ← 𝐑𝐁& + 𝐄&-- + Encode(𝑀)
4. 𝑐𝑡!, (C𝑐𝑡& &∈[#]) ≔ (𝐔, 𝐕& &∈[#])

We fix this two shortcomings J
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§ Attacks with 𝑶(𝟏) samples
§ Lattice (primal)
§ Lattice (dual)
§ Decoding

§ Attacks with many samples
§ Arora-Ge: requires 𝑛L M samples

(𝑑 = cardinality of error support)
§ BKW

§ Toolkit
§ Bit dropping

+ Decrease |𝐕#|
+ Increase the LWE noise
− Increase decryption failure

§ Coefficient dropping
+ Decrease |𝐕#|

§ Increase the modulus 𝑞
+ Pack more bits / coefficient
− Increase |𝐔#|
− Decrease the LWE noise
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§ Attacks with 𝑶(𝟏) samples
§ Lattice (primal)
§ Lattice (dual)
§ Decoding

§ Attacks with many samples
§ Arora-Ge: requires 𝑛L M samples

(𝑑 = cardinality of error support)
§ BKW

§ Toolkit
§ Bit dropping

+ Decrease |𝐕#|
+ Increase the LWE noise
− Increase decryption failure

§ Coefficient dropping
+ Decrease |𝐕#|

§ Increase the modulus 𝑞
+ Pack more bits / coefficient
− Increase |𝐔#|
− Decrease the LWE noise

Good for security!

Good for efficiency!



Bandwidth of mPKE based on existing parameters (blue) and new parameters (blank)

mPKE scheme |𝒆𝒌| |𝒄𝒕𝟎| |E𝒄𝒕𝒊|
Kyber512 [SAB+ 20] 768(+32) 640 128
Ilum512 768 704 48
LPRime653 [BBC+ 20] 865(+32) 865(+32) 128
LPRime757 1076 1076 32
Frodo640 [NAB+ 20] 9600(+16) 9600 120
Bilbo640 10240 10240 24
SIKEp434 [JAC+ 20] 330 330 16

Size in byte. Security level is NIST I (≧ AES-128).

Comparison: new parameters vs. existing parameters
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|&𝑐𝑡!| is reduced by 60-80% at the cost of slightly increase in 𝑒𝑘 and 𝑐𝑡"
⇒ Minimize the concrete size of key update messages (~|&𝑐𝑡!| ⋅ 𝑁)



Comparison and Implementation
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Chained CmPKE vs. TreeKEM: upload and download cost
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Size of key update messages in Kilobyte (y-axis) depending on the group size (x-axis)

Chained CmPKE (upload cost): (a) Bilbo640, (b) SIKEp434

Chained CmPKE (download cost ): (a) Bilbo640, (b) SIKEp434

TreeKEM (upload and download cost): (a) Frodo640, (b) SIKEp434

𝑁 𝑁

size in KB



Chained CmPKE vs. TreeKEM: total cost (normalized by N)
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Chained CmPKE: (a) Bilbo640, (b) SIKEp434

TreeKEM: (a) Bilbo640, (b) SIKEp434

Total cost of key update in Kilobyte (y-axis) depending on the group size 𝑁 (x-axis)

𝑁 𝑁

size in KB size in KB



Chained CmPKE: computation cost
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(a) Generate key update messages (b) Process received messages

Execution time in nanoseconds of some procedures as a function of group size for 
Ilum512 (      ), LPRime757 (       ), Bilbo640 (      ), SIKEp434 (      ).
Log-scale. Times are obtained on Apple M1@3.2 GHz.

ns ns

𝑁 𝑁



Conclusion
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1. Committing mPKE ⇒ achieve 𝑂 1 download cost
2. More efficient PQ mPKE ⇒ reduce the size of key update messages

Chained CmPKE: CGKA with asymmetric bandwidth cost

Chained CmPKE is based on Chained mKEM with two new ideas:

Scheme Upload cost Download cost Total cost
(upload + N-1 download)

TreeKEM Ω(log𝑁) Ω(log𝑁) Ω(𝑁log𝑁)
Chained mKEM 𝑂(𝑁) 𝑂(𝑁) 𝑂(𝑁!)
Chained CmPKE 𝑂 𝑁 ⋆ 𝑶(𝟏) 𝑶(𝑵)
⋆: When 𝑁 is about hundreds, the concrete upload cost is smaller than TreeKEM. 
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