
A Concrete Treatment of
Efficient Continuous Group Key Agreement

via Multi-Recipient PKEs

Keitaro Hashimoto
Tokyo Tech/AIST, JP

ACM CCS 2021

Shuichi Katsumata
AIST, JP

Eamonn W. Postlethwaite
CWI, NL

Thomas Prest
PQShield SAS, FR

Bas Westerbaan
Cloudflare, NL

Outline

1

1. Background

2. Our solution: Chained CmPKE

3. More efficient PQ multi-recipient PKEs

4. Comparison and implementation

Efficient post-quantum CGKA protocol

Background: Secure (Group) Messaging

2

Secure (Group) Messaging

3

Recently, a lot of people use secure (group) messaging apps.
Applications Num. of monthly active users
WhatsApp 2.0 billion
Facebook Messenger 1.3 billion
Telegram 550 million
Snapchat 514 million

Ref: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

Secure (Group) Messaging

4

§ “NSA Prism program taps into user data of Apple, Google and others”, The Guardian, 2013
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data

§ “Al Jazeera journalists ‘hacked via NSO Group spyware’”, BBC, 2020
https://www.bbc.com/news/technology-55396843

§ “Grand jury subpoena for Signal user data, Central District of California”, Signal , 2020
https://signal.org/bigbrother/central-california-grand-jury/

Recently, a lot of people use secure (group) messaging apps.
Applications Num. of monthly active users
WhatsApp 2.0 billion
Facebook Messenger 1.3 billion
Telegram 550 million
Snapchat 514 million

Because governments and hackers try to gather personal information.
Ref: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

Secure (Group) Messaging

5

Recently, a lot of people use secure (group) messaging apps.
Applications Num. of monthly active users
WhatsApp 2.0 billion
Facebook Messenger 1.3 billion
Telegram 550 million
Snapchat 514 million

Ref: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

§ 2-party messaging: Signal protocol
§ Analyzed by a lot of works [CGC+17, ACD19, BFG+20, HKKP21]

§ Group messaging : Continuous Group Key Agreement (this talk)

Existing secure (group) messaging:

Continuous Group Key Agreement (CGKA) [ACDT20]

6

§ Add a party to the group
§ Remove a party from the group
§ Update key materials (Ratcheting)

Group key agreement protocols that concentrate the cryptographic
mechanisms of secure group messaging protocols:

←$

Continuous Group Key Agreement (CGKA) [ACDT20]

7

CGKA achieves strong security properties by updating key materials

§ Forward secrecy (FS)

Epoch

Compromised!

Secure

Secure
§ Post-compromise security (PCS)

Key update

Key materials

Epoch
Key materials

Compromised!

Existing CGKA protocols

8

§ TreeKEM [BBR18, BBN19, ACDT20, ACJM20, AJM20…]
§ Used in IETF Messaging Layer Security (MLS) [OBR+21, BBM+20]

§ Chained mKEM [BBN19]
§ Based on multi-recipient PKE (mPKE)
§ Starting point of our study

Scheme Upload cost Download cost Total cost
(upload + N-1 download)

TreeKEM Ω(log𝑁) Ω(log𝑁) Ω(𝑁log𝑁)
Chained mKEM 𝑂(𝑁) 𝑂(𝑁) 𝑂(𝑁!)

Bandwidth cost for key update (𝑁: group size)

Efficient key update is important

9

As the group size 𝑁 increases,
§ the size of key update messages also increases
§ the frequency of key update also increases

§ Likelihood of key compromise is higher for large group

Efficient key update is important

10

As the group size 𝑁 increases,
§ the size of key update messages also increases
§ the frequency of key update also increases

§ Likelihood of key compromise is higher for large group

This tension is amplified by two factors:
§ Messaging apps target mobile devices

§ Data cap per month is limited (e.g., 1GB)
§ Post-quantum cryptography

§ Consume x10 or more bandwidth than classical counterpart
§ Example: TreeKEM with Classic McEliece [ABC+20] used in 256 users' group.

If each user updates its key material twice, it costs 1 GB for each user.

Efficient key update is important

11

As the group size 𝑁 increases,
§ the size of key update messages also increases
§ the frequency of key update also increases

§ Likelihood of key compromise is higher for large group

This tension is amplified by two factors:
§ Messaging apps target mobile devices

§ Data cap per month is limited (e.g., 1GB)
§ Post-quantum cryptography

§ Consume x10 or more bandwidth than classical counterpart
§ Example: TreeKEM with Classic McEliece [ABC+20] used in 256 users' group.

If each user updates its key material twice, it costs 1 GB for each user.
Smaller key update costs are desirable in the real-world!

Efficient key update is important

12

As the group size 𝑁 increases,
§ the size of key update messages also increases
§ the frequency of key update also increases

§ Likelihood of key compromise is higher for large group

This tension is amplified by two factors:
§ Messaging apps target mobile devices

§ Data cap per month is limited (e.g., 1GB)
§ Post-quantum cryptography

§ Consume x10 or more bandwidth than classical counterpart
§ Example: TreeKEM with Classic McEliece [ABC+20] used in 256 users' group.

If each user updates its key material twice, it costs 1 GB for each user.

Smaller key update costs are desirable!

Purpose
Design PQ CGKA protocol with small key update costs

Our contribution

13

1. Committing mPKE ⇒ achieve 𝑂 1 download cost
2. More efficient PQ mPKE ⇒ reduce the concrete size of key update messages

Chained CmPKE: CGKA with asymmetric bandwidth cost

Scheme Upload cost Download cost Total cost
(upload + N-1 download)

TreeKEM Ω(log𝑁) Ω(log𝑁) Ω(𝑁log𝑁)
Chained mKEM 𝑂(𝑁) 𝑂(𝑁) 𝑂(𝑁!)
Chained CmPKE 𝑂 𝑁 ⋆ 𝑶(𝟏) 𝑶(𝑵)

Chained CmPKE is based on Chained mKEM with two new ideas:
⋆: When 𝑁 is about hundreds, the concrete upload cost is smaller than TreeKEM.

New CGKA: Chained CmPKE

14

Contribution 1

Racap: Multi-recipient PKE (mPKE)

15

§ The same message 𝑀 can be efficiently encrypted to 𝑁 parties
§ Recently, [KKPP20] has revisited mPKE in the post-quantum setting

§ .𝑐𝑡# ≪ |𝑐𝑡$| in this setting

mEnc 𝑀, 𝑒𝑘# #∈ & → (𝑐𝑡$, .𝑐𝑡# #∈[&])

mDec 𝑑𝑘!, 𝑐𝑡$, .𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

mDec 𝑑𝑘&, 𝑐𝑡$, .𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

(𝑐𝑡!, &𝑐𝑡")

(𝑐𝑡!, &𝑐𝑡#)

Starting point: Chained mKEM [BBN19]

16

CGKA protocol based on mPKE
𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Key update on 𝑁 parties’ group

Chained mKEM [BBN19]

17

CGKA protocol based on mPKE

1. Gen new public key 𝑒𝑘!
2. Gen new group key 𝐾
3. Gen 𝑐𝑡", /𝑐𝑡# #∈ % ← mEnc(𝐾, 𝑒𝑘# #∈ %)
4. Gen 𝑠𝑖𝑔! ← Sign 𝑠𝑘!, 𝑒𝑘!
5. Gen 𝑠𝑖𝑔& ← Sign 𝑠𝑘!, (𝑐𝑡", /𝑐𝑡# #∈[%])

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!
offline

offline
Store the msg
from party 1

offline

Chained mKEM [BBN19]

18

CGKA protocol based on mPKE

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Drawback of Chained mKEM [BBN19]

19

CGKA protocol based on mPKE

(𝑒𝑘!, 𝑐𝑡%,)𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%,)𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%,)𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

Download 𝑶(𝑵) ciphertexts
to verify signature

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download 𝑶(𝑵) ciphertexts
to verify signature

Drawback of Chained mKEM [BBN19]

20

CGKA protocol based on mPKE

(𝑒𝑘!, 𝑐𝑡%,)𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%,)𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

(𝑒𝑘!, 𝑐𝑡%,)𝒄𝒕𝒊 𝒊∈ 𝑵 , 𝑠𝑖𝑔!, 𝑠𝑖𝑔")

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Can we reduce download cost to 𝑂 1 ?

Naïve approach to achieve 𝑂(1) download cost

21

1. Gen new public key 𝑒𝑘!
2. Gen new group key 𝐾
3. Gen 𝑐𝑡", /𝑐𝑡# #∈ % ← mEnc(𝐾, 𝑒𝑘# #∈ %)
4. Gen 𝑠𝑖𝑔! ← Sign 𝑠𝑘!, 𝑒𝑘!
5. For 𝒊 ∈ 𝑵 , 𝒔𝒊𝒈𝟐,𝒊 ← Sign 𝒔𝒌𝟏, (𝒄𝒕𝟎, /𝒄𝒕𝒊)

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐,𝒊 𝒊∈ 𝑵)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Sender signs individually messages for each user

Naïve approach to achieve 𝑂(1) download cost

22

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Recipients selectively download messages they needed

Naïve approach to achieve 𝑂(1) download cost

23

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Recipients selectively download messages they needed

Download cost is 𝑶(𝟏)

Naïve approach to achieve 𝑂(1) download cost

24

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#

Recipients selectively download messages they needed

𝑒𝑘!

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐,𝒊 𝒊∈ 𝑵)

Upload 𝑶(𝑵) signatures

Note: PQ signatures are large! Download cost is 𝑶(𝟏)

Download cost is 𝑶(𝟏)

Naïve approach to achieve 𝑂(1) download cost

25

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡$, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",$)

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡", 𝑠𝑖𝑔!, 𝑠𝑖𝑔",")

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡#, 𝑠𝑖𝑔!, 𝑠𝑖𝑔",#)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#

Recipients selectively download messages they needed

𝑒𝑘!

(𝑒𝑘!, 𝑐𝑡%,)𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐,𝒊 𝒊∈ 𝑵)

Upload 𝑶(𝑵) signatures

Note: PQ signatures are large!

Can we reduce download cost to 𝑂 1
without increasing the num. of signatures?

Our solution: Committing mPKE (CmPKE)

26

CmEnc 𝑀, 𝑒𝑘# #∈ & → (T, 𝑐𝑡# #∈[&])

CmDec 𝑑𝑘!, T, 𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

CmDec 𝑑𝑘&, T, 𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

(T, 𝑐𝑡")

(T, 𝑐𝑡#)

Our solution: Committing mPKE (CmPKE)

27

CmEnc 𝑀, 𝑒𝑘# #∈ & → (T, 𝑐𝑡# #∈[&])

CmDec 𝑑𝑘!, T, 𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

CmDec 𝑑𝑘&, T, 𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

(T, 𝑐𝑡")

(T, 𝑐𝑡#)

Commitment-binding: T is linked to a unique message 𝑀
⇒ If parties receive the same T, they decrypt the same 𝑀 or ⊥

Our solution: Committing mPKE (CmPKE)

28

CmEnc 𝑀, 𝑒𝑘# #∈ & → (T, 𝑐𝑡# #∈[&])

CmDec 𝑑𝑘!, T, 𝑐𝑡! → 𝑀 𝑜𝑟 ⊥𝑒𝑘!

⋮

CmDec 𝑑𝑘&, T, 𝑐𝑡& → 𝑀 𝑜𝑟 ⊥

𝑒𝑘"

𝑒𝑘#

Propose IND-CPA mPKE ⇒ IND-CCA CmPKE transformation
§ CmEnc runs mEnc 𝑘, 𝑒𝑘# #∈ & → (ct$, E𝑐𝑡# #∈[&]) and SKE.Enc 𝑘,𝑀 → 𝑐
§ Outputs T = 𝑐𝑡$, 𝑐 and 𝑐𝑡# = .𝑐𝑡#, 𝑐 = 32 bytes
Use key‐committing AEADs [FOR17, GLR17, ADG+20] as SKE

(T, 𝑐𝑡")

(T, 𝑐𝑡#)

Our CGKA: Chained CmPKE

29

1. Gen new public key 𝑒𝑘!
2. Gen new group key 𝐾
3. Gen 𝐓, 𝒄𝒕𝒊 𝒊∈ 𝑵 ← 𝐂𝐦𝐄𝐧𝐜(𝑲, 𝒆𝒌𝒊 𝒊∈ 𝑵)
4. Gen 𝑠𝑖𝑔! ← Sign 𝑠𝑘!, 𝑒𝑘!
5. Gen 𝒔𝒊𝒈𝟐 ← Sign 𝒔𝒌𝟏, 𝐓

(𝑒𝑘!, 𝐓, 𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#

CGKA protocol based on CmPKE

𝑒𝑘!

Due to commitment-binding,
tampering with 𝑐𝑡& is detected at decryption

Our CGKA: Chained CmPKE

30

(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Recipients selectively download messages they needed

Our CGKA: Chained CmPKE

31

(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download cost is 𝑶(𝟏)

Our CGKA: Chained CmPKE

32

(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download cost is 𝑶(𝟏)
Upload constant signatures

(𝑒𝑘!, T, 𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

Our CGKA: Chained CmPKE

33

(𝑒𝑘!, T, 𝒄𝒕𝟑, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝟐, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

(𝑒𝑘!, T, 𝒄𝒕𝑵, 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

𝑒𝑘"

𝑒𝑘$

𝑒𝑘#𝑒𝑘!

Download cost is 𝑶(𝟏)
Upload constant signatures

(𝑒𝑘!, T, 𝑐𝑡& &∈ # , 𝑠𝑖𝑔!, 𝒔𝒊𝒈𝟐)

We achieve 𝑂(1) download cost
without increasing the num. of signatures! J

Security of Chained CmPKE

34

§ Adopt the UC security model in [AJM20] used to analyze TreeKEM
§ It considers active adversaries and malicious insiders

§ Extend this model to capture selective downloading of messages
§ Our model is the strict generalization of the model in [AJM20]

Chained CmPKE is as secure as TreeKEM version 10 in MLS

More efficient post-quantum mPKEs

35

Contribution 2

Existing post-quantum mPKE

36

Enc(𝑒𝑘 = 𝐁,𝑀):
1. Sample short matrixes 𝐑, 𝐄′, 𝐄′′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. 𝐕 ← 𝐑𝐁 + 𝐄$$ + Encode(𝑀)
4. 𝑐𝑡 ≔ (𝐔, 𝐕)

[KKPP20] proposed efficient PQ mPKEs based on LWE, LWR, and SIDH.
Example scheme based on [LPR10, LP11]:

mEnc({𝑒𝑘%, … , 𝑒𝑘#},𝑀):
1. Sample short matrixes 𝐑, 𝐄′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. For 𝑖 = 1,… ,𝑁

1. Sample short matrix 𝐄&--

2. 𝐕& ← 𝐑𝐁& + 𝐄&-- + Encode(𝑀)
4. 𝑐𝑡!, (C𝑐𝑡& &∈[#]) ≔ (𝐔, 𝐕& &∈[#])

Existing post-quantum mPKE

37

1. Not optimize parameters to make &𝑐𝑡! smaller
• In CGKA setting, small E𝑐𝑡# is desirable to reduce upload cost (~|E𝑐𝑡#| ⋅ 𝑁)

2. Not analyze the hardness of underlying problems in mPKE setting

Two shortcomings of [KKPP20]:

Enc(𝑒𝑘 = 𝐁,𝑀):
1. Sample short matrixes 𝐑, 𝐄′, 𝐄′′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. 𝐕 ← 𝐑𝐁 + 𝐄$$ + Encode(𝑀)
4. 𝑐𝑡 ≔ (𝐔, 𝐕)

[KKPP20] proposed efficient PQ mPKEs based on LWE, LWR, and SIDH.
Example scheme based on [LPR10, LP11]:

mEnc({𝑒𝑘%, … , 𝑒𝑘#},𝑀):
1. Sample short matrixes 𝐑, 𝐄′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. For 𝑖 = 1,… ,𝑁

1. Sample short matrix 𝐄&--

2. 𝐕& ← 𝐑𝐁& + 𝐄&-- + Encode(𝑀)
4. 𝑐𝑡!, (C𝑐𝑡& &∈[#]) ≔ (𝐔, 𝐕& &∈[#])

Existing post-quantum mPKE

38

1. Not optimize parameters to make &𝑐𝑡! smaller
• In CGKA setting, small E𝑐𝑡# is desirable to reduce upload cost (~|E𝑐𝑡#| ⋅ 𝑁)

2. Not analyze the concrete security in mPKE setting

Two shortcomings of [KKPP20]:

Enc(𝑒𝑘 = 𝐁,𝑀):
1. Sample short matrixes 𝐑, 𝐄′, 𝐄′′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. 𝐕 ← 𝐑𝐁 + 𝐄$$ + Encode(𝑀)
4. 𝑐𝑡 ≔ (𝐔, 𝐕)

[KKPP20] proposed efficient PQ mPKEs based on LWE, LWR, and SIDH.
Example scheme based on [LPR10, LP11]:

mEnc({𝑒𝑘%, … , 𝑒𝑘#},𝑀):
1. Sample short matrixes 𝐑, 𝐄′
2. 𝐔 ← 𝐑𝐀 + 𝐄′
3. For 𝑖 = 1,… ,𝑁

1. Sample short matrix 𝐄&--

2. 𝐕& ← 𝐑𝐁& + 𝐄&-- + Encode(𝑀)
4. 𝑐𝑡!, (C𝑐𝑡& &∈[#]) ≔ (𝐔, 𝐕& &∈[#])

We fix this two shortcomings J

Designing Lattice-Based mPKEs: Attacks and Toolkit

39

§ Attacks with 𝑶(𝟏) samples
§ Lattice (primal)
§ Lattice (dual)
§ Decoding

§ Attacks with many samples
§ Arora-Ge: requires 𝑛L M samples

(𝑑 = cardinality of error support)
§ BKW

§ Toolkit
§ Bit dropping

+ Decrease |𝐕#|
+ Increase the LWE noise
− Increase decryption failure

§ Coefficient dropping
+ Decrease |𝐕#|

§ Increase the modulus 𝑞
+ Pack more bits / coefficient
− Increase |𝐔#|
− Decrease the LWE noise

Designing Lattice-Based mPKEs: Attacks and Toolkit

40

§ Attacks with 𝑶(𝟏) samples
§ Lattice (primal)
§ Lattice (dual)
§ Decoding

§ Attacks with many samples
§ Arora-Ge: requires 𝑛L M samples

(𝑑 = cardinality of error support)
§ BKW

§ Toolkit
§ Bit dropping

+ Decrease |𝐕#|
+ Increase the LWE noise
− Increase decryption failure

§ Coefficient dropping
+ Decrease |𝐕#|

§ Increase the modulus 𝑞
+ Pack more bits / coefficient
− Increase |𝐔#|
− Decrease the LWE noise

Good for security!

Good for efficiency!

Bandwidth of mPKE based on existing parameters (blue) and new parameters (blank)

mPKE scheme |𝒆𝒌| |𝒄𝒕𝟎| |E𝒄𝒕𝒊|
Kyber512 [SAB+ 20] 768(+32) 640 128
Ilum512 768 704 48
LPRime653 [BBC+ 20] 865(+32) 865(+32) 128
LPRime757 1076 1076 32
Frodo640 [NAB+ 20] 9600(+16) 9600 120
Bilbo640 10240 10240 24
SIKEp434 [JAC+ 20] 330 330 16

Size in byte. Security level is NIST I (≧ AES-128).

Comparison: new parameters vs. existing parameters

41

|&𝑐𝑡!| is reduced by 60-80% at the cost of slightly increase in 𝑒𝑘 and 𝑐𝑡"
⇒ Minimize the concrete size of key update messages (~|&𝑐𝑡!| ⋅ 𝑁)

Comparison and Implementation

42

Chained CmPKE vs. TreeKEM: upload and download cost

43

Size of key update messages in Kilobyte (y-axis) depending on the group size (x-axis)

Chained CmPKE (upload cost): (a) Bilbo640, (b) SIKEp434

Chained CmPKE (download cost): (a) Bilbo640, (b) SIKEp434

TreeKEM (upload and download cost): (a) Frodo640, (b) SIKEp434

𝑁 𝑁

size in KB

Chained CmPKE vs. TreeKEM: total cost (normalized by N)

44

Chained CmPKE: (a) Bilbo640, (b) SIKEp434

TreeKEM: (a) Bilbo640, (b) SIKEp434

Total cost of key update in Kilobyte (y-axis) depending on the group size 𝑁 (x-axis)

𝑁 𝑁

size in KB size in KB

Chained CmPKE: computation cost

45

(a) Generate key update messages (b) Process received messages

Execution time in nanoseconds of some procedures as a function of group size for
Ilum512 (), LPRime757 (), Bilbo640 (), SIKEp434 ().
Log-scale. Times are obtained on Apple M1@3.2 GHz.

ns ns

𝑁 𝑁

Conclusion

46

1. Committing mPKE ⇒ achieve 𝑂 1 download cost
2. More efficient PQ mPKE ⇒ reduce the size of key update messages

Chained CmPKE: CGKA with asymmetric bandwidth cost

Chained CmPKE is based on Chained mKEM with two new ideas:

Scheme Upload cost Download cost Total cost
(upload + N-1 download)

TreeKEM Ω(log𝑁) Ω(log𝑁) Ω(𝑁log𝑁)
Chained mKEM 𝑂(𝑁) 𝑂(𝑁) 𝑂(𝑁!)
Chained CmPKE 𝑂 𝑁 ⋆ 𝑶(𝟏) 𝑶(𝑵)
⋆: When 𝑁 is about hundreds, the concrete upload cost is smaller than TreeKEM.

References

47

§ [CGCD+17] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A Formal Security Analysis
of the Signal Messaging Protocol. EuroS&P 2017.

§ [ACD19] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: Security notions, proofs, and modularization
for the signal protocol. EUROCRYPT 2019.

§ [BFG+20] J. Brendel, M. Fischlin, F. Günther, C. Janson, and D. Stebila, “Towards Post-Quantum Security
for Signal’s X3DH Handshake. SAC 2020.

§ [HKKP21] K. Hashimoto, S. Katsumata, K. Kwiatkowski, and T. Prest. An Efficient and Generic Construction
for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable. PKC 2021.

§ [ACDT20] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Security analysis and improvements for the ietf
mls standard for group messaging. CRYPTO 2020.

§ [BBN18] K. Bhargavan, R. Barnes, and E. Rescorla. TreeKEM : Asynchronous Decentralized Key
Management for Large Dynamic Groups. A protocol proposal for Messaging Layer Security (MLS). 2018.

§ [BBN19] K. Bhargavan, B. Beurdouche, and P. Naldurg. Formal Models and Verified Protocols for Group
Messaging: Attacks and Proofs for IETF MLS. Research Report. 2019.

§ [ACJM20] J. Alwen, S. Coretti, D. Jost, and M. Mularczyk. Continuous Group Key Agreement with Active
Security. TCC 2020.

§ [AJM20] J. Alwen, D. Jost, and M. Mularczyk. On The Insider Security of MLS. IACR ePrint. 2020.

References

48

§ [OBR+21] E. Omara, B. Beurdouche, E. Rescorla, S. Inguva, A. Kwon, and A. Duric. The Messaging Layer
Security MLS Architecture - draft-ietf-mls-architecture-06. Internet Engineering Task Force Draft. 2021.

§ [BBM+20] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The
Messaging Layer Security - draft-ietf-mls-protocol-11. Internet Engineering Task Force Draft. 2020.

§ [FOR17] P. Farshim, C. Orlandi, and R. Rosie. Security of symmetric primitives under incorrect usage of
keys. IACR Transactions on Symmetric Cryptology, pages 449–473, 2017.

§ [GLR17] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryption.
CRYPTO 2017.

§ [ADG+20] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and S. Schmieg. How to abuse and fix
authenticated encryption without key commitment. To appear in USENIX Security 2022.

§ [KKPP20] S. Katsumata, K. Kwiatkowski, F. Pintore, and T. Prest. Scalable Ciphertext Compression
Techniques for Post-quantum KEMs and Their Applications. ASIACRYPT 2020.

§ [LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
EUROCRYPT 2010.

§ [LP11] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE‐based encryption. CT‐RSA 2011.

References

49

§ [ABC+20] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram, I. von Maurich, R.
Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters, P. Schwabe,
N. Sendrier, J. Szefer, C. Jung Tjhai, M. Tomlinson, and W. Wang. Classic McEliece. Technical report,
National Institute of Standards and Technology, 2020.

§ [SAB+20] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, G.
Seiler, and D. Stehlé. CRYSTALS‐KYBER. Technical report, National Institute of Standards and Technology,
2020.

§ [BBC+20] D. J. Bernstein, B. Bob Brumley, M. Chen, C. Chuengsatiansup, T. Lange, A. Marotzke, B. Peng,
N. Tuveri, C. van Vredendaal, and B. Yang. NTRU Prime. Technical report, National Institute of Standards
and Technology, 2020.

§ [NAB+20] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa,
I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and . Stebila. FrodoKEM. Technical report, National
Institute of Standards and Technology, 2020.

§ [JAC20+] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, D. Urbanik, G. Pereira, K. Karabina,
and A. Hutchinson. SIKE. Technical report, National Institute of Standards and Technology, 2020.

