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Our Problem and Results

1

▪ Reveal new conditions that make tightly secure signatures impossible

▪ This leaves room for tightly-secure signatures from search assumptions

⇒ Fail to prove impossibility…

▪ Construct a new signature in multi-user setting with corruptions from CDH

▪ It does not contradict the known impossibility results

▪ Reduction loss is independent of #users, but depends on #RO-query

⇒ Fail to prove possibility…

Can we construct a tightly secure signature

in multi-user setting with corruptions

based on search assumptions?

* Open problem mentioned in [PR20,PQR21]



Background

2



Digital Signature

3

▪ Cryptographic primitive for user authentication

▪ Building block for secure protocols, e.g., authenticated key exchange

▪ Its security analysis is important for real-world protocols

▪ There are many metric to evaluate security

▪ Our focus: reduction loss, security model, and computational problem

This message is sent 
by her!Message

Signature

Signer Verifier

Verification key

Signing key



Reduction and Reduction Loss
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▪ To prove the security of signature schemes, we show a reduction ℛ

▪ ℛ solves a computational problem by using an adversary 𝒜

Adv𝒜

𝐓 𝒜
≤ L ⋅

Advℛ

𝐓 ℛ

▪ ℛ is constructed so that its advantage Adv and running time 𝐓 satisfy

▪ The coefficient 𝑳 is called reduction loss

▪ Reduction is tight if 𝐿 is small constant (i.e., independent of 𝒜’s activity etc.)

▪ Since 𝐿 has an impact on parameter size, tight reduction is desirable

Adversary 𝒜

ℛ
Computational 

problem

Reduction
Instance

𝑝𝑘

(𝑚∗, 𝜎∗)
Solution



Security Model for Signatures
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▪ We consider multi-user setting with corruptions (MU-EUF-CMA-C)

▪ Generalization of standard single-user security (EUF-CMA)

𝑝𝑘𝑖 𝑖∈[𝑁]

𝑖 ∈ [𝑁]

Game MU−UF−CMA−C

For 𝑖 ∈ [𝑁] : 𝑝𝑘𝑖, 𝑠𝑘𝑖 ← Gen

Sig

Corr

𝑵 users

Corrupt users adaptively

(𝑖∗, 𝑚∗, 𝜎∗)

▪ EUF-CMA implies MU-EUF-CMA-C with reduction loss 𝐿 = #Users

𝑠𝑘𝑖

(𝑖, 𝑚)

𝜎

Adversary 𝒜



Computational Problems
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Search problems: e.g., CDH

𝔾: cyclic groups with order 𝑝
𝑔: generator in 𝔾
𝛼, 𝛽 ∈ {0,… , 𝑝 − 1}

(𝑔, 𝑔𝛼 , 𝑔𝛽) 𝑔𝛼𝛽

Decision problems: e.g., DDH

𝛼, 𝛽, 𝛾 ∈ {0,… , 𝑝 − 1}
Set 𝑆 (𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛼𝛽)

(𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾)

or
𝑆 or 𝑆′

Set 𝑆′

▪ Search problems are more difficult than decision problems
⇒ Signature schemes based on search problems are more secure



Existing Tightly-Secure Signatures (All in the ROM) 
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Scheme Security model Assumption

[GJ03,Che05,KLP17] Single-user CDH 

[PR20] Multi-user w/o corruption  CDH 

[WLGSZ19] Multi-user w/ corruption One-More CDH 

[Bader14] Multi-user w/ corruption SXDH 

[BHJKL15] Multi-user w/ corruption DLIN 

[GJ18] Multi-user w/ corruption CDH+DDH 

[DGJL21,PW22] Multi-user w/ corruption DDH 

Can we construct a tightly secure signature scheme

in multi-user w/ corruption based on search assumptions?
Open problem mentioned in [PR20,PQR21]



Existing Tightly-Secure Signatures (All in the ROM) 
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◼ 𝐿 = 𝑂(1)

◼ One-More CDH

[WLGSZ19]
EUF-CMA

MU-EUF-CMA

◼ 𝐿 = 𝑂(1)

◼ CDH

[GJ03,Che05]

◼ 𝐿 = 𝑂(1)

◼ CDH

[PR20]

◼ 𝑳 =#Users
◼ CDH

MU-EUF-CMA-C

Stronger assumption

Multi-user setting 

without corruption

Search assumption

◼ 𝐿 = 𝑂(1)

◼ DDH

[BHJKL15,GJ18,DGJL21]



W/o key 

re-randomizability*

Open problem

[BJLS16]

◼ 𝐿 ≥ #Users[PW22] 

Impossibility Results on Tightly-Secure Signatures
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◼ 𝐿 ≥ #Users

W/ key 

re-randomizability*
◼ 𝐿 = 𝑂(1)

◼ One-More CDH

[WLGSZ19]

Non-interactive problems

(NIP)

Parallel-OR

signatures

𝑳 = 𝑶(𝟏)?

Search assumption Interactive problems

MU-EUF-CMA-C

* There exists a PPT algorithm ReRand(pk, sk) → sk’ that samples sk’ w.r.t. pk uniformly at random. 

◼ 𝐿 = 𝑂(1)

◼ DDH

[BHJKL15,GJ18,DGJL21]



◼ 𝐿 = 𝑂(1)

◼ DDH

Open problem

[BJLS16]

◼ 𝐿 ≥ #Users[PW22] 

Our Results: New Impossibility Result

10

◼ 𝐿 ≥ #Users ◼ 𝐿 = 𝑂(1)

◼ One-More CDH

[WLGSZ19]

NIP

W/o key 

re-randomizability

W/ key 

re-randomizability

[BHJKL15,GJ18,DGJL21]

Interactive problems

MU-EUF-CMA-C

𝑳 = 𝑶(𝟏)?

Search assumption

Our result 1

Generalize result of [PW22]

Parallel-OR

signatures



Open problem

[BJLS16]

◼ 𝐿 ≥ #Users[PW22] 

Our Results: New Impossibility Result and New Signature
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◼ 𝑳 = 𝑶 𝒒𝑯
◼ CDH

New signature

◼ 𝐿 ≥ #Users ◼ 𝐿 = 𝑂(1)

◼ One-More CDH

[WLGSZ19]

NIP

Our result 2

W/o key 

re-randomizability

W/ key 

re-randomizability

Interactive problems

MU-EUF-CMA-C

Our result 1

Generalize result of [PW22]

𝑳 = 𝑶(𝟏)?

Search assumption

◼ 𝐿 = 𝑂(1)

◼ DDH

[BHJKL15,GJ18,DGJL21]

Parallel-OR

signatures



Our result 1: New Impossibility Result
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Our Impossibility Result
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▪ Assume SIG satisfies the following properties (explain later)

▪ 𝜺𝑹𝑶-RO statistically close

▪ 𝜺𝑺𝑰𝑮-signature statistically close

▪ Then, reduction loss 𝐿 from MU-EUF-CMA-C of SIG to NIP satisfies

𝐿 ≥
1

Adv
ℛ𝒜
NIP + 24𝛿ℛ + 𝜀𝑅𝑂 + 𝜀𝑆𝐼𝐺 +

1
#Users

𝛿ℛ: statistical distance between MU-EUC-CMA-C game and ℛ’s simulating game

If Adv
ℛ𝒜
NIP, 𝛿ℛ , 𝜀𝑆𝐼𝐺, 𝜀𝑅𝑂 are all negligibly small, 𝐿 ≥ #Users



New Property of Signature (1)
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▪ We observe why Parallel-OR signature cannot achieve tight security [PW22]

▪ This is due to the property w.r.t. RO queries during signature generation

Formalize this property

𝑠𝑘

𝑠𝑘′

SigH(𝑠𝑘,𝑚)

SigH(𝑠𝑘′, 𝑚)

Dist. of RO 

query sequence
𝑝𝑘

𝜺𝑹𝑶-RO statistically close:

𝑄(𝑠𝑘,𝑚): random variable representing the RO queries issued in the run of SigH(𝑠𝑘,𝑚)

SD(𝑄(𝑠𝑘,𝑚); 𝑄(𝑠𝑘′, 𝑚)) ≤ 𝜀𝑅𝑂

For any 𝑚, 𝑝𝑘, and 𝑠𝑘, 𝑠𝑘′ w.r.t. 𝑝𝑘



New Property of Signature (2)

15

▪ We notice [GJ18] achieve tight security even it is RO statistically close…

▪ We compare Parallel-OR (w/ 𝐿 ≥ 𝑁) and [GJ18] (w/ 𝐿 = 𝑂(1))
⇒ Their distribution of signatures are different!

Formalize this property

𝑠𝑘

𝑠𝑘′

Sig(𝑠𝑘,𝑚)

Sig(𝑠𝑘′, 𝑚)
Dist. of signatures𝑝𝑘

𝜺𝑺𝑰𝑮-signature statistically 

close:

𝑆𝐼𝐺(𝑠𝑘,𝑚): random variable representing the output of Sig(𝑠𝑘,𝑚)

SD(𝑆𝐼𝐺(𝑠𝑘,𝑚); 𝑆𝐼𝐺(𝑠𝑘′,𝑚)) ≤ 𝜀𝑆𝐼𝐺

For any 𝑚, 𝑝𝑘, and 𝑠𝑘, 𝑠𝑘′ w.r.t. 𝑝𝑘



Preliminaries for Proof: Meta-Reduction
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1. Assume reduction ℛ that solves NIP by interacting 𝒜

2. Construct meta-reduction ℳ that efficiently simulates 𝒜 against ℛ

3. Prove that ℛ’s output does not change if 𝒜 is simulated by ℳ

𝑝𝑘𝑖 𝑖∈[𝑁]

(𝑚∗, 𝜎∗)

Simulate 𝒜 ℛ

Meta-reduction 𝓜

NI

P

Simulate

NIP

Instance

Solution

The existence of ℳ contradicts the hardness of NIP
⇒ Such an ℛ does not exist!

Instance

Solution



Preliminaries for Proof: Weaker Security Definition for SIG
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▪ To prove impossibility results, we consider weaker security definition

▪ No message attacks in multi-user setting with static corruptions
(MU-EUF-S)

▪ Proving 𝐿 ≥ #Users for MU-EUF-S is sufficient

𝑝𝑘𝑖 𝑖∈[𝑁]

𝑗 ∈ [𝑁]

Game MU-EUF-S

For 𝑖 ∈ [𝑁] : 𝑝𝑘𝑖, 𝑠𝑘𝑖 ← Gen

𝑠𝑘𝑖 𝑖∈[𝑁]/{𝑗}

(𝑚∗, 𝜎∗)
𝒜 wins if 𝖵𝖾𝗋 𝑝𝑘𝑗, 𝑚

∗, 𝜎∗ = 1

query

ℎ
H No signing oracle

Adversary 𝒜

Chose corrupted users statically



Preliminaries for Proof: Modeling Reduction ℛ
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ℛ = (ℛ1, ℛ2, ℛ3, ℛH)

ℎ

ℛ1

ℛ2

𝑆𝑡ℛ

ℛ3

ℛH 𝑆𝑡ℛ

𝑝𝑘𝑖 𝑖∈[𝑁]

𝑗 ∈ [𝑁]

𝑠𝑘𝑖 𝑖∈[𝑁]/{𝑗}

(𝑚∗, 𝜎∗)

query

NI

P

Solution

Instance

ℛ has black-box access to 𝒜 only 

once and without rewinding*
ℛ tries to solve NIP

𝜹ℛ

Statistical distance between ℛ’s simulation and 

the real MU-EUF-S game is at most 𝛿𝑅

ℛ1

ℛ2

ℛH

ℛ3

Adversary 𝒜

* Such an ℛ is said to be simple [PW22]. In the security proofs of many cryptographic primitives, reductions are simple. 



Proof Overview of Our Impossibility Result
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1. ℳ inputs its instance into ℛ1 as it is.

Meta-reduction ℳ

ℛ1

ℛ2,𝑗∗

𝑆𝑡ℛ

ℛ3

𝑆𝑡ℛ ,𝑗∗

𝑗 ∈ [𝑁]

𝑠𝑘𝑖 𝑖∈[𝑁]/{𝑗}

Rewind N times

ℛ2,1 ℛ2,𝑁⋯ ⋯

Solution

2. Run ℛ2 for all 𝑗 ∈ [𝑁] and

store obtained secret keys.

3. Chose 𝑗∗ ∈ 𝑁 at random and
run ℛ3 with state 𝑆𝑡𝑅,𝑗∗

Identical to the proof in [BJLS16,PW22]

4. Generate a forgery (𝒎∗, 𝝈∗)
with stored sk𝒋∗

Instance of NIP
𝑝𝑘𝑖 𝑖∈[𝑁]

ℛH

(𝑚∗, 𝜎∗)

RO-statistically close and signature statistically-close ensures that 

ℛ3’s output interacting 𝒜 and interacting ℳ are indistinguishable

([BJLS16] ensures it with key re-randomizability)



Our Impossibility Result (repeated)
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▪ Assume SIG satisfies the following properties

▪ 𝜺𝑹𝑶-RO statistically close

▪ 𝜺𝑺𝑰𝑮-signature statistically close

▪ Then, reduction loss 𝐿 from MU-EUC-CMA-C of SIG to NIP satisfies

𝐿 ≥
1

Adv
ℛ𝒜
NIP + 4𝛿ℛ + 𝜀𝑅𝑂 + 𝜀𝑆𝐼𝐺 +

1
#Users

If Adv
ℛ𝒜
NIP, 𝛿ℛ , 𝜀𝑆𝐼𝐺, 𝜀𝑅𝑂 are all negligibly small, 𝐿 ≥ #Users

𝛿ℛ: statistical distance between MU-EUC-CMA-C game and ℛ’s simulating game



Discussion on Our Impossibility Result
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To achieve tight security, at least one of the conditions is satisfied

1. SIG’s security is based on interactive problems

• Already done by [WLGSZ19]

2. 𝒜’s view by ℛ is not stat. close from the real game (i.e., 𝛿ℛ ≠ 𝑛𝑒𝑔𝑙)

• If so, they should be computationally indistinguishable

⇒ Decision problem is needed as in [Bader14,BHJKL15, DGJL21]

3. SIG is not signature-statistically close (i.e., 𝜀𝑆𝐼𝐺 ≠ 𝑛𝑒𝑔𝑙)

• If so, they should be computationally indistinguishable

⇒ Decision problem is needed as in [GJ18]

4. SIG is not RO-statistically close (i.e., 𝜀𝑅𝑂 ≠ 𝑛𝑒𝑔𝑙)

• Decision problem may not be required…



Our results 2: New SIG from CDH 

- reduction loss is independent of #Users -

22



Our Approach
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3-round lossy identification 

based on DDH [CP92]

Sequential-OR 

for 3-round IP 

[FHJ20]

Tight MU-EUF-CMA-C SIG 

based on DDH 

[DGJL21,PW22]

5-round identification

based on CDH [KLP17]

Sequential-OR 

for multi-round IP 

[FGQRW23]

Tight MU-EUF-CMA-C SIG

based on CDH???

Prior work

Our approach

Signatures based on sequential-OR proof is not RO statistically close

* To make 𝛿ℛ ≠ 𝑛𝑒𝑔𝑙, DDH is required



5-round Identification from CDH [KLP17]
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ℎ ←$ 𝔾

𝑅

ℎ

𝑠

𝑠𝑘 ←$ ℤ𝑝
𝑝𝑘 ≔ 𝑔𝑠𝑘

IGen 1𝜆 → (𝑠𝑘, 𝑝𝑘)

𝑅′

ℎ′ ℎ′ ←$ ℤ𝑝

Prover
Verifier

This is a ZK protocol for language 

showing (𝑔, 𝑝𝑘, ℎ, 𝑅𝐿) is a DH tuple

Sim 𝑝𝑘 → 𝑇𝑟𝑎𝑛

𝑠𝑡 ≔ 𝑟 ←$ ℤ𝑝
𝑅 ≔ 𝑔𝑟

P1 𝑠𝑘 → 𝑅

𝑅𝐿 ≔ ℎ𝑠𝑘 , 𝑅𝑅 ≔ ℎ𝑟

𝑅′ ≔ (𝑅𝐿, 𝑅𝑅)
𝑠𝑡′ ≔ 𝑟

P2 𝑠𝑡, 𝑠𝑘, 𝑅, ℎ → 𝑅′

𝑠 ≔ 𝑤ℎ′ + 𝑟 mod 𝑝

P3 𝑠𝑡′, 𝑠𝑘, 𝑅, 𝑅′, ℎ, ℎ′

→ 𝑠

Iff 𝑅 = 𝑔𝑠 ⋅ 𝑝𝑘−ℎ
′
∧ 𝑅𝑅 = ℎ𝑠 ⋅ 𝑅𝐿

−ℎ′

return 1

V 𝑝𝑘, 𝑅, 𝑅′, ℎ, ℎ′, 𝑠 → 1/0

𝑠, 𝑣, ℎ′ ←$ ℤ𝑝
ℎ ≔ 𝑔𝑣

𝑅 ≔ 𝑔𝑠 ⋅ 𝑥−ℎ
′

𝑅𝐿 ≔ 𝑝𝑘𝑣, 𝑅𝑅 ≔ 𝑅𝑣

𝑅′ ≔ (𝑅𝐿, 𝑅𝑅)
𝑇𝑟𝑎𝑛 ≔ (𝑅, ℎ, 𝑅′, ℎ′, 𝑠) 



Intuition of Security Proof for [KLP17]
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Adversary against 

[KLP17]

𝑝𝑘

ℎ

𝑅

(𝑅, 𝑅′, ℎ, ℎ′, 𝑠)

ℛ
CDH instance 𝑥, 𝑦 ←$ ℤ𝑝

𝑋 ≔ 𝑔𝑥, 𝑌 ≔ 𝑔𝑦

KGen

RO 𝐻

Solution 𝑍

𝑥′ ←$ ℤ𝑝
𝑝𝑘 ≔ 𝑋 ⋅ 𝑔𝑥′

ℎ′

𝑅′
If V 𝑝𝑘, 𝑅, 𝑅′, ℎ, ℎ′, 𝑠 = 1,

(𝑔, 𝑝𝑘, ℎ, 𝑅𝐿) is a DH tuple

⇒ Since 𝑝𝑘 = 𝑋 ⋅ 𝑔𝑥, ℎ = 𝑌 ⋅ 𝑔𝑦𝑗,

𝑅𝐿 = 𝑔(𝑥+𝑥
′)(𝑦+𝑦𝑗)

⇒ ℛ sets 𝑍 = 𝑅𝐿 ⋅ 𝑋
−𝑦𝑗 ⋅ 𝑌−𝑥′ ⋅ 𝑔−𝑥

′𝑦𝑗

𝑦𝑖 ←$ ℤ𝑝
ℎ ≔ 𝑌 ⋅ 𝑔𝑦𝑗



Convert 5-round ID into NI Sequential OR-Proof [FGQRW23]
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𝐴𝑏 ≔ 𝑎𝑏, 𝑎𝑏
′ ←$ 𝔾 × ℤ𝑝

𝑇𝑟𝑎𝑛1−𝑏 ≔ 𝑆𝑖𝑚 𝑝𝑘1−𝑏
𝑎1−𝑏 ≔ ℎ1−𝑏/𝐻(𝑅1−𝑏, 𝐴𝑏)
𝑎1−𝑏
′ ≔ ℎ1−𝑏

′ − 𝐻′(𝑅1−𝑏, 𝑅1−𝑏
′ , 𝐴𝑏)

𝐴1−𝑏 ≔ (𝑎1−𝑏, 𝑎1−𝑏
′ )

𝑅𝑏, 𝑠𝑡𝑏 ←$ 𝑃1(𝑠𝑘𝑏)

ℎ𝑏 ≔ 𝐻 𝑅𝑏, 𝐴1−𝑏 × 𝑎𝑏
𝑅𝑏
′ , 𝑠𝑡𝑏

′ ←$ 𝑃2(𝑠𝑡𝑏, 𝑠𝑘𝑏, 𝑅𝑏, ℎ𝑏)
ℎ𝑏
′ ≔ 𝐻′ 𝑅𝑏, 𝑅𝑏

′ , 𝐴1−𝑏 + 𝑎𝑏
′

𝑠𝑏 ← 𝑃3(𝑠𝑡𝑏
′ , 𝑠𝑘𝑏, 𝑅𝑏, 𝑅𝑏

′ , ℎ𝑏, ℎ𝑏
′ )

Return 𝑠 ≔ (𝑅0, 𝑅0
′ , 𝑅1, 𝑅1

′ , 𝐴0, 𝐴1, 𝑠0, 𝑠1)

ℎ0 ≔ 𝐻 𝑅0, 𝐴1 × 𝑎0
ℎ0
′ ≔ 𝐻′ 𝑅0, 𝑅0

′ , 𝐴1 + 𝑎0
′

ℎ1 ≔ 𝐻 𝑅1, 𝐴0 × 𝑎1
ℎ1
′ ≔ 𝐻′ 𝑅1, 𝑅1

′ , 𝐴0 + 𝑎1
′

𝑣0 ← 𝑉0(𝑝𝑘0, 𝑅0, 𝑅0
′ , ℎ0, ℎ0

′ , 𝐴0, 𝑠0)
𝑣1 ← 𝑉1(𝑝𝑘1, 𝑅1, 𝑅1

′ , ℎ1, ℎ1
′ , 𝐴1, 𝑠1)

Return 𝑣0 ∧ 𝑣1

𝑠

Prover Verifier

POR(𝑝𝑘, 𝑠𝑘)

𝑏 ←$ {0,1}

𝑝𝑘0, 𝑠𝑘0 ←$ 𝐼𝐺𝑒𝑛 1𝜆

𝑝𝑘1, 𝑠𝑘1 ←$ 𝐼𝐺𝑒𝑛(1
𝜆)

Return 𝑝𝑘 ≔ 𝑝𝑘0, 𝑝𝑘1 , 𝑠𝑘 ≔ 𝑠𝑘𝑏, 𝑏

IGenOR(1
𝜆)

VOR(𝑝𝑘, 𝑠)
To convert multi-round IP 

into OR-proof, 

offset 𝑎 is required to 

computes ID’s challenge ℎ



New Signature from [KLP17]+[FGQRW23]
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𝑝𝑘, 𝑠𝑘 ←$ IGenOR(1
𝜆)

Return 𝑝𝑘, 𝑠𝑘

𝜎

Signer VerifierKGen(1𝜆)

Sign(𝑝𝑘, 𝑠𝑘,𝑚)

Verify(𝑝𝑘,𝑚, 𝜎)

𝐴𝑏 ≔ 𝑎𝑏, 𝑎𝑏
′ ←$ 𝔾 × ℤ𝑝

𝑇𝑟𝑎𝑛1−𝑏 ≔ 𝑆𝑖𝑚 𝑝𝑘1−𝑏
𝑅𝑏, 𝑠𝑡𝑏 ←$ 𝑃1(𝑠𝑘𝑏)
𝑎1−𝑏 ≔ ℎ1−𝑏/𝐻(𝑝𝑘1−𝑏, 𝑅0, 𝑅1, 𝐴𝑏, 𝑚)
𝑎1−𝑏
′ ≔ ℎ1−𝑏

′ − 𝐻′(𝑝𝑘1−𝑏, 𝑅0, 𝑅1, 𝑅1−𝑏
′ , 𝐴𝑏, 𝑚)

𝐴1−𝑏 ≔ (𝑎1−𝑏, 𝑎1−𝑏
′ )

ℎ𝑏 ≔ 𝐻 𝑝𝑘𝑏, 𝑅0, 𝑅1, 𝐴1−𝑏, 𝑚 × 𝑎𝑏
𝑅𝑏
′ , 𝑠𝑡𝑏

′ ←$ 𝑃2(𝑠𝑡𝑏, 𝑠𝑘𝑏, 𝑅𝑏, ℎ𝑏)
ℎ𝑏
′ ≔ 𝐻′ 𝑝𝑘𝑏, 𝑅0, 𝑅1, 𝑅𝑏

′ , 𝐴1−𝑏, 𝑚 + 𝑎𝑏
′

𝑠𝑏 ← 𝑃3(𝑠𝑡𝑏
′ , 𝑠𝑘𝑏, 𝑅𝑏, 𝑅𝑏

′ , ℎ𝑏, ℎ𝑏
′ )

Return 𝜎 ≔ (𝑅0, 𝑅0
′ , 𝑅1, 𝑅1

′ , 𝐴0, 𝐴1, 𝑠0, 𝑠1)

ℎ0 ≔ 𝐻 𝑝𝑘0, 𝑅0, 𝑅1, 𝐴1, 𝑚 × 𝑎0
ℎ0
′ ≔ 𝐻′ 𝑝𝑘0, 𝑅0, 𝑅1, 𝑅0

′ , 𝐴1, 𝑚 + 𝑎0
′

ℎ1 ≔ 𝐻 𝑝𝑘1, 𝑅0, 𝑅1, 𝐴0, 𝑚 × 𝑎1
ℎ1
′ ≔ 𝐻′ 𝑝𝑘1, 𝑅0, 𝑅1, 𝑅1

′ , 𝐴0, 𝑚 + 𝑎1
′

𝑣0 ← 𝑉0(𝑝𝑘0, 𝑅0, 𝑅0
′ , ℎ0, ℎ0

′ , 𝐴0, 𝑠0)
𝑣1 ← 𝑉1(𝑝𝑘1, 𝑅1, 𝑅1

′ , ℎ1, ℎ1
′ , 𝐴1, 𝑠1)

Return 𝑣0 ∧ 𝑣1
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▪ We first take the similar proof approach as [KLP17]

MU-EUF-CMA-C

adversary
𝑝𝑘𝑖 𝑖∈[𝑁]

𝛽

𝛼

(𝑖∗, 𝑚∗, 𝜎∗)

ℛ
CDH instance

For 𝑖 = 1…𝑁
𝑏𝑖 ←$ {0,1}

𝑝𝑘𝑏𝑖 , 𝑠𝑘𝑏𝑖 ←$ IGen 1𝜆

𝑥𝑖 ←$ ℤ𝑝
𝑝𝑘1−𝑏𝑖 ≔ 𝑋 ⋅ 𝑔𝑥𝑖

𝑦𝑖 ←$ ℤ𝑝
𝐻 𝛼 ≔ 𝑌 ⋅ 𝑔𝑦𝑗

𝑥, 𝑦 ←$ ℤ𝑝
𝑋 ≔ 𝑔𝑥, 𝑌 ≔ 𝑔𝑦

KGen

RO 𝐻

Simulation of 

Sig, Corrupt, RO 𝐻′

are omitted

Solution 𝑍

⋮
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▪ Forged signature:

𝜎∗ ≔ 𝑅0
∗ , 𝑅0

′ ∗, 𝑅1
∗, 𝑅1

′ ∗, 𝐴0
∗ , 𝐴1

∗ , 𝑠0
∗, 𝑠1

∗ , 𝑅1−𝑏
′∗ ≔ 𝑅𝐿,1−𝑏

∗ , 𝑅𝑅,1−𝑏
∗

▪ If Verify 𝑝𝑘∗, 𝑚∗, 𝜎∗ = 1, following is a DH tuple

𝑔, 𝑝𝑘1−𝑏
∗ , ℎ1−𝑏

∗ = 𝐻 ⋅ × 𝑎1−𝑏
∗ = 𝑌𝑔𝑦𝑗 × 𝑎1−𝑏

∗ , 𝑅𝐿,1−𝑏
∗
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▪ Forged signature:

𝜎∗ ≔ 𝑅0
∗ , 𝑅0

′ ∗, 𝑅1
∗, 𝑅1

′ ∗, 𝐴0
∗ , 𝐴1

∗ , 𝑠0
∗, 𝑠1

∗ , 𝑅1−𝑏
′∗ ≔ 𝑅𝐿,1−𝑏

∗ , 𝑅𝑅,1−𝑏
∗

▪ If Verify 𝑝𝑘∗, 𝑚∗, 𝜎∗ = 1, following is a DH tuple

𝑔, 𝑝𝑘1−𝑏
∗ , ℎ1−𝑏

∗ = 𝐻 ⋅ × 𝑎1−𝑏
∗ = 𝑌𝑔𝑦𝑗 × 𝑎1−𝑏

∗ , 𝑅𝐿,1−𝑏
∗

▪ Therefore,

𝑅𝐿,1−𝑏
∗ = 𝑎1−𝑏

∗ 𝑠𝑘1−𝑏
∗

× 𝑌𝑥 × 𝑋𝑦𝑗∗ × 𝑌𝑥𝑖∗ × 𝑔𝑥𝑖∗𝑦𝑗∗

ℛ can compute them by itself
ℛ cannot compute this term

since it does not know 
𝑠𝑘1−𝑏,𝑖∗ and DL of 𝑎1−𝑏

∗

Solution of 

CDH instance

𝓡 cannot solve CDH problem…
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▪ To get 𝑔, 𝑝𝑘1−𝑏
∗ , 𝑌𝑔𝑦𝑗 , 𝑅𝐿,1−𝑏

∗ as DH tuple, ℛ programs RO 𝐻 as

𝐻 ⋅ =
𝑌𝑔𝑦𝑗

𝑎1−𝑏
▪ Then, 

𝑅𝐿,1−𝑏
∗ = 𝑌𝑥 × 𝑋𝑦𝑗∗ × 𝑌𝑥𝑖∗ × 𝑔𝑥𝑖∗𝑦𝑗∗

ℛ can compute them by itself

𝓡 can solve CDH problem! 
Solution of CDH instance

← Divide by offset in advance
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▪ To get 𝑔, 𝑝𝑘1−𝑏
∗ , 𝑌𝑔𝑦𝑗 , 𝑅𝐿,1−𝑏

∗ as DH tuple, ℛ programs RO 𝐻 as

𝐻 ⋅ =
𝑌𝑔𝑦𝑗

𝑎1−𝑏
▪ Then,

𝑅𝐿,1−𝑏
∗ = 𝑌𝑥 × 𝑋𝑦𝑗∗ × 𝑌𝑥𝑖∗ × 𝑔𝑥𝑖∗𝑦𝑗∗

▪ How ℛ decides offset 𝑎 to program 𝐻?

⇒ 𝒜 sends 𝑎1−𝑏
∗ to 𝐻 to generate the forged signature

⇒ 𝒜 makes 𝑞𝐻 queries and ℛ cannot detect which one is used for 𝜎∗

⇒ 𝓡 chooses 𝒂𝟏−𝒃
∗ from 𝒒𝑯 queries, which incurs 𝒒𝑯 loss…

ℛ can compute them by itself

𝓡 can solve CDH problem! 
Solution of CDH instance

← Divide by offset in advance
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Can we construct a tightly secure signature scheme

in multi-user setting with corruptions

based on search assumptions?

Problem is still open! 

▪ Reveal new conditions that make tightly secure signatures impossible

▪ This leaves room for tightly-secure signatures from search assumptions

⇒ Fail to prove impossibility…

▪ Construct a new signature in multi-user setting with corruptions from CDH

▪ Reduction loss is ind. of #users, but depends on #RO query

⇒ Fail to prove possibility…

* Open problem mentioned in [PR20,PQR21]

Full version: ia.cr/2024/1286
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